胃肠微环境下吻合钉仿生表面对细菌黏附的微流场仿真
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(11672208,81741141),天津市企业重点实验室开放基金(SY-04-202301-004),天津市研究生科研创新项目(服务产业专项)(2022SKYZ147),天津理工大学2022年校级研究生科研创新实践项目 (YJ2207),天津理工大学研究生教学改革基金(ZDXM2207)


Bacterial Adhesion on Bionic Surface of Anastomotic Nail in Gastrointestinal Microenvironment: A Microflow Field Simulation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 模拟在吻合钉植入人体以后,吻合钉表面与肠壁组织之间的微流场环境,研究其仿生疏水化表面对细胞外液流速和壁面处流体剪切力的影响,进而通过流场的变化从而调控细菌的黏附。方法 观察鲨鱼皮肤微结构,建立细菌在微流场环境中的简化二维运动模型。通过计算流体动力学(computational fluid dynamics, CFD)数值仿真,模拟静态流场和动态流场中,细菌分别在光滑表面和微织构表面的运动,比较两种表面环境下细菌周围的流场特征和流体剪切力,分析流体剪切力影响细菌黏附的内在机制。 结果 仿生微织构的加入增强了微流场内细胞外液的流速,在静态流场中流体对细菌的黏滞作用较小;动态流场中流体对细菌的推动作用更强;一定范围内的微坑宽度使微织构壁面所受流体剪切力更大。结论 吻合钉的仿生微织构表面,加快了细胞外液的流速,提高了微织构壁面和细菌所受流体剪切力,对细菌的附着有一定影响。研究结果为吻合钉抑菌表面的研究提供了理论依据。

    Abstract:

    Objective To simulate the microflow field environment between the anastomotic nail surface and intestinal wall tissue after implantation and to study the effect of hydrophobic surfaces on the flow rate of extracellular fluid and the fluid shear force on the wall to regulate bacterial adhesion through changes in the flow field. Methods The microstructure of shark skin was observed, and a simplified two-dimensional (2D) movement model of bacteria in a microflow field was established. Using computational fluid dynamics (CFD) numerical simulation, the movement of bacteria on a smooth surface and micro-textured surface in a static and dynamic flow field were simulated. The flow field characteristics around bacteria and the magnitude of fluid shear force under the two surface environments were compared, and the internal mechanism of the fluid shear force affecting bacterial adhesion was analyzed. Results The addition of the biomimetic microtexture enhanced the flow rate of the extracellular fluid in the microflow field, and the fluid had little viscous effect on the bacteria in the static flow field. The fluid in the dynamic flow field had a stronger pushing effect on the bacteria. The fluid shear force on the microtextured wall increased when the pit width was within a specific range. Conclusions The bionic micro-textured surface of the anastomotic nail can accelerate the flow rate of extracellular fluid, increase the fluid shear force of micro-textured walls and bacteria, and influence bacterial adhesion. These results provide a theoretical basis for studying bacteriostatic surfaces of anastomotic nails.

    参考文献
    相似文献
    引证文献
引用本文

冯荣川,胡亚辉,马言,张春秋,刘淑红,刘帮,付蔚华.胃肠微环境下吻合钉仿生表面对细菌黏附的微流场仿真[J].医用生物力学,2024,39(2):339-345

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-06
  • 最后修改日期:2023-09-13
  • 录用日期:
  • 在线发布日期: 2024-04-26
  • 出版日期:
关闭