Investigation on Mechanical Property of the Compound Scaffold of Sol-Gel Bioactive Glass/Collegan
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective To investigate the mechanical prosperity and degradation rate of the scaffolds by compounding collagen and the nano sol-gel derived bioactive glass were studied in this paper,and that would provide the theoretical basis for the further application of collagen based scaffold. Method The scaffold by compounding collagen and the nano sol-gel derived bioactive glass (58S) were prepared using the freeze-drying techniques with the bioactive glass as phase addition. To affect the aggregation state of the collagen fibers with adjusting the supplementation of bioactive glass, then the microstructures of the compound scaffold would be different. At last, the compound scaffolds with different mechanical properties were prepared. Results (1) As the aggregation state of the collagen fibers changed, the scaffold with the coarser collagen fibers with the diameters 400-600nm approximately is prepared. The coarser collagen fibers would play an important role in improving the mechanical property and slowing down the degradation rate of the collagen based scaffolds. (2) The interactions between bioactive glass and collagen are studied by FTIR and Raman technologies. When the quality of content of collagen in the compound scaffold is lower than 20%, the secondary structure of collagen is damaged severely. Conclusions The composite scaffold with the mass ratio of collagen to bioactive glass to 40:60 has the best performance in mechanical property and degradation, which would be helpful for further applications

    Reference
    Related
    Cited by
Get Citation

ZHANG Juan-juan, MENG Yong-chun, CHEN Xiao-feng, LI Yu-li, LUO Xiaogang, LIN Cai. Investigation on Mechanical Property of the Compound Scaffold of Sol-Gel Bioactive Glass/Collegan[J]. Journal of medical biomechanics,2010,25(1):16-20

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online:
  • Published: