Analysis on Differences in Stress Distribution of Foot and Ankle at Different Push-Off Angles Based on Finite Element Model
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective To simulate foot-ankle stresses at different push-off ankles in ice skating, so as to obtain a reasonably quantitative relationship between push-off angle and foot-ankle stress through optimization analysis. Methods The finite element coupling model of ice hockey shoes and foot-ankle was established, then the kinematic parameters of ice hockey players were obtained by three-dimensional ( 3D) photography for model validation and boundary. The foot-ankle stresses at different push-off angles were calculated and compared, and the multi-objective optimization function model was constructed. Results At the same push-off angle, the stress of the tibia and fibula was the largest, followed by the subtalar joint stress, then the first metatarsophalangeal joint stress, and finally the plantar fascia stress was the smallest. As the angle of push-off decreased, the foot-ankle stresses increased monotonously. The stress changes of the tibia and fibula and the plantar fascia were large, and the stress changes of the subtalar joint and the first metatarsophalangeal joint were relatively smaller. Conclusions During the start-up push-off phase of ice hockey, the push-off angle and foot-ankle stress show an inversely proportional relationship. The optimal push-off angle depends on the expected value of skating speed. If the preference coefficient between speed and stress tolerance is given, the optimal push-off angle can be calculated by optimization method.

    Reference
    Related
    Cited by
Get Citation

ZHU Xiaolan, WANG Haichun, LIU Jingxi, SHEN Yanfei, ZHAO Jia. Analysis on Differences in Stress Distribution of Foot and Ankle at Different Push-Off Angles Based on Finite Element Model[J]. Journal of medical biomechanics,2022,37(6):1138-1144

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 12,2021
  • Revised:January 04,2022
  • Adopted:
  • Online: December 24,2022
  • Published: