Numerical modeling and biomechanical analysis of the human mitral valve
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective To establish a numerical model of human mitral valve and simulate its closing process, so as to analyze stress distributions on the valve apparatuses, study the interaction between leaflets of mitral valve and chordae tendineae, and explore the relationship between the force of chordae tendineae and their thickness. Methods A geometric model of human mitral valve was constructed. On the basis of the geometric model, the finite element model was established by defining the element type, material attributes, contacts, loads and constraints. Parameters such as stress, velocity and displacement were calculated after solving the model. Results The stress distribution on the valve was non-uniform. The clefts between the scallops in the posterior leaflet were always under the highest load. When no chordae tendineae were attached, the leaflets turned over to the side of the atrium. When chordea tendineae were attached, the anterior and posterior leaflet could close up successfully. Different chordae tendineae applied different forces to the valve. The strut chorea tendineae attached to the anterior leaflet applied highest force among all the chordea tendineae. The correlation coefficient between the thickness of chordae tendineae and their force was 0.954. Conclusions The two zones with higher stresses, namely the center of the leaflet and the clefts between the three scallops in the posterior leaflet, are also the positions of mitral valve cleft in clinic. Chordea tendineae can apply the pulling force on the leaflets while the mitral valve is under load, thus the leaflets won’t turn over to the side of atrium and the valve can close up in time. Chordea tendineae with thicker anatomic structure always apply a higher force on the leaflets.

    Reference
    Related
    Cited by
Get Citation

ZHONG Qi, ZENG Wen-hua, HUANG Xiao-yang, WANG Bo-liang. Numerical modeling and biomechanical analysis of the human mitral valve[J]. Journal of medical biomechanics,2014,29(1):53-59

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 31,2012
  • Revised:December 03,2012
  • Adopted:
  • Online: February 24,2014
  • Published: