Effects of breathing patterns on flow field in upper airway of an OSAHS patient during natural sleep
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Objective To study the effects of different pressure boundary conditions and breathing patterns on the airflow of upper airway and related physiological status of the obstructive sleep apnea hypopnea syndrome (OSAHS) patient at sleep stage with eupnea and apnea, respectively. Methods The CT scan data of an OSAHS patient during natural sleep in supine position were acquired and used to reconstruct a three-dimensional finite element model of upper airway. Meanwhile the pressure changes in laryngeal cavity of the OSAHS patient were clinically measured and then used as the boundary conditions, and four typical breathing patterns (nasal inhaling and nasal exhaling, nasal inhaling and oral exhaling, oral inhaling and nasal exhaling, oral inhaling and oral exhaling) were considered for computational fluid simulation. Results The airflow of the OSAHS patient during sleep was an unstable, whorled and bidirectional flow, which was significantly affected by pressure boundary conditions and breathing patterns. Compared with nasal breathing, the maximum velocity of airflow by mouth breathing was increased, resulting in an increase of pressure drop in oral cavity, with was about 30% in inspiration and 100% in expiration. Conclusions It is significant to use CT data of an OSAHS patient during natural sleep for model reconstruction and the clinically measured pressure in laryngeal cavity as boundary conditions for finite element simulations, and the results will contribute to understand the characteristics of flow field in upper airway of the OSAHS patient during real natural sleep.

    Reference
    Related
    Cited by
Get Citation

CHEN Liu-jie, ZHANG Xiang-min, XIAO Tan. Effects of breathing patterns on flow field in upper airway of an OSAHS patient during natural sleep[J]. Journal of medical biomechanics,2016,31(6):540-547

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 07,2015
  • Revised:October 31,2015
  • Adopted:
  • Online: January 09,2017
  • Published: